SYNTHESIS OF (258)-5a-CHOLESTANE-3B, 26-DIOL $\left[2,4,2',4'-^3H_4\right]$

Roberto Bovara, Renato Longhi, Francesco Nicotra* and Giuseppe Vecchio Laboratorio di Chimica degli Ormoni del C.N.R., Via Mario Bianco 9, Milano, Italy.

Received June 2, 1976

Revised July 29, 1976

SUMMARY

 $(25\mathrm{S})$ -5 α -cholestane-3 β , 26-diol $\left[2,4,2',4'-^3\mathrm{H}_4\right]$ was synthesized by hydrogenation of neotigogenin acetate $\underline{2}$, followed by acetylation to $(25\mathrm{S})$ -5 α -furostane-3 β , 26-diol diacetate $\underline{5}$; this was oxidized to $(25\mathrm{S})$ -16, 22-dioxo-5 α -cholestane-3 β , 26-diol diacetate $\underline{6}$. Clemmensen reduction of the last product afforded $(25\mathrm{S})$ -5 α -cholestane-3 β , 26-diol 26-monoacetate $\underline{9}$, which was oxidized to 3-oxo-derivative $\underline{12}$; this was tritium labeled by base-catalyzed exchange with 0.1 N-NaOH in iso $\mathrm{Pro}^3\mathrm{H}$ and reduced to $\underline{14}$ with NaBH_4 .

Key Words: $(25S)-5\alpha$ -cholestane-3 β , 26-diol $\left[2,4,2',4'-{}^3H_4\right]$, biosynthesis, neotigogenin, tomatidine.

The details of the biosynthetic pathway leading to steroidal sappogenins and spirosolanes are less known for the members with (25S)-configuration than for the (25R)-analogues. This may also be due to the fact that the biosynthetic intermediates of the (25S)-series are less accessibles.

In a study (1) of the biosynthesis of neotigogenin $\underline{1}$ and tomatidine $\underline{3}$ we needed labelled (25S)-5 α -cholestane-3 β , 26-diol, which was synthesized as follow: neotigogenin $\underline{1}$, small quantities of which are contained in commercial tigogenin, was separated from this com

^{*}Istituto di Chimica Organica della Facoltà di Scienze, Via Saldini 50, Milano, Italy.

^{© 1977} by John Wiley & Sons, Ltd.

RO
$$\frac{1}{2}$$
 R=H $\frac{3}{2}$ R=H

pound by fractional cristallization of the acetates and careful column chromatography of the mother liquors.

Catalytic hydrogenation of neotigogenin acetate $\underline{2}$ gave (258)-5 α -furostane-3 β , 26-diol 3-monoacetate $\underline{4}$, which was acetylated to $\underline{5}$; this diacetate was oxidized to (258)-16, 22-dioxo-5 α -cholestane-3 β , 26-diol diacetate $\underline{6}$ with CrO $_3$ in acetic acid.

Clemmensen reduction of the last product converted it to (25S)- -5α -cholestane- 3β , 26-diol 7 and to (25S)- 3β , 26-dihydroxy- 5α -cholestan-16-one 11; acetylation of 7 with 1 molar equivalent of acetic anhydride in pyridine afforded the 3-monoacetate 8 along with unreacted 7, 26-monoacetate 9 and diacetate 10. The monoacetate 8 was tosylated and reduced with LiAlH $_4$; the product obtained was purified and found to be identical to a known cholestan- 3β -ol; this demonstrated that the above reactions did not alter the configurations at the chiral centres. The 26-monoacetate 9 was oxidized to 3-oxo-derivative 12, which was tritium-labelled 13 by base-cataly-zed exchange with 0.1 N-NaOH in iso 9-ro 3 H and reduced with 9-NaBH $_4$.

Purification with preparative TLC afforded (25S)-5 α -cholestane-3 β , 26-diol- $\left[2,4,2',4'-{}^{3}\mathrm{H}_{4}\right]$ 14 with a specific activity of 61.7 mCi/mMole.

The 25S configuration of the above compounds was confirmed by the $M_{\rm D}$ values, which showed a negative contribution of the (25S)--26-hydroxyl group (mean value obtained from 7, 8, 13 = -23.7°), which is in agreement with the data obtained by R. Tschesche (2).

EXPERIMENTAL SECTION

Melting points were determined on a Kofler hot-plate microscope and are uncorrected. Infrared (ir) spectra were recorded with a Perkin-Elmer 237 spectrophotometer. Nuclear magnetic resonance (nmr) spectra were recorded with a Perkin-Elmer R12 spectrometer at 60 MHz using tetramethylsilane as internal standard. The specific rotations were measured with a Perkin-Elmer 141 polarimeter.

Neotigogenin acetate 2

Neotigogenin acetate was obtained from the mother liquors after cristallization of commercial tigogenin acetate by column chromatography on silica gel-Celite 535 (1:1). Petroleum ether-methylene chloride (7:3) eluted 9.35 g of pure neotigogenin acetate from 200 g of commercial tigogenin; mp 175-179°C; $\left[\alpha\right]_{D}^{25}$ -73.1° (c 0.32,CHCl₃) [Cf. (3): mp 174-176°C; $\left[\alpha\right]_{D}^{25}$ -73.4° (CHCl₃)]; analysis calcd. for ${}^{C}_{29}{}^{H}_{46}{}^{O}_{4}$: C 75.94, H 10.11, found: C 77.06, H 9.82. The ir spectrum presents the typical pattern of (25S)-sapogenins (986, 920, 900, 850 cm⁻¹) (4) and that of the deacetylated derivative is identical to that published by H. Sato (5).

(25S)- 5α -furostane- 3β , 26-diol 3-monoacetate 4

9 g of neotigogenin acetate was hydrogenated as described (6), obtaining 8.8 g of $\underline{4}$; mp 108-110°C [Cf. (7): 107-111°C]; $\left[\alpha\right]_{D}^{25}$ -15° (c 0.22, CHCl $_{3}$); ir (KBr) 3460, 3370, 1735, 1240 cm $^{-1}$.

(25S)-16, 22-dioxo-5α-cholestane-3β, 26-diol diacetate 6

8.7 g of <u>4</u> was acetylated with acetic anhydride-pyridine to $(25\mathrm{S})$ -5 α -furostane-3 β , 26-diol diacetate <u>5</u> (9.3 g of oily product), which was oxidized with CrO_3 in acetic acid (8). The crude $(25\mathrm{S})$ -16, 22-dioxo-5 α -cholestane-3 β , 26-diol diacetate <u>6</u> was cristallized from methanol-water (7:3) to yield 6 g of pure compound, mp 114-118°C; $\left[\alpha\right]_{\mathrm{D}}^{25}$ -122.5° (c 0.29, CHCl_3); ir (KBr) 1735, 1720, 1250 cm⁻¹; analysis calcd. for $\mathrm{C}_{31}\mathrm{H}_{48}\mathrm{O}_6$: C 72.06, H 9.36, found:C 72.54, H 9.56; nmr (CDCl $_3$): δ 0.78 (s, 3H, 18-CH $_3$), 0.86 (s, 3H, 19-CH $_3$), 0.92 (d J=7 Hz, 3H, 27-CH $_3$), 0.96 (d J=7 Hz, 3H, 21-CH $_3$), 2.00 (s, 3H, $\mathrm{CH}_3\mathrm{COOR}$), 2.03 (s, 3H, $\mathrm{CH}_3\mathrm{COOR}$), 2.6 (m, 2H, $\mathrm{CH}_2\mathrm{COR}$), 3.93 (d,

J=6 Hz, 2H, CH_2OCOR), 4.5-4.8 (m, 1H, 3-CHOAc).

(25S)- 5α -cholestane- 3β , 26-diol 7 and (25S)- 3β , 26-dihydroxy- 5α -cholestan-16-one 11

Clemmensen reduction (9) of 5 g of $\underline{6}$ yielded 4.2 g of crude compound which was chromatographed on silica gel-Celite 535 (1:1) and eluted with petroleum ether-acetone (9:1); 2.2 g of (25S)-5 α -chole stane-3 β , 26-diol $\underline{7}$ and 1 g of (25S)-3 β , 26-dihydroxy-5 α -cholestan-16-one $\underline{11}$ were obtained.

The diol Z had mp 167-172°C; $\left[\alpha\right]_0^{25}+17^\circ$ (c 0.34, CHCl₃); ir (KBr) 3250 cm⁻¹; analysis calcd. for $C_{27}H_{48}O_2$: C 80.14, H 11.96, found: C 80.62, H 11.78; nmr (CDCl₃) & 0.64 (s, 3H, 18-CH₃), 0.80 (s, 3H, 19-CH₃), 0.87 (d, 3H, 27-CH₃), 0.90 (d, 3H, 21-CH₃), 3.45 (d J=6 Hz, 2H, 26-<u>CH₂OH</u>), 3.4-3.7 (m, 1H, 3-CH).

The ketone $\underline{11}$ had mp 149-151°C; analysis calcd. for $^{\rm C}_{27}^{\rm H}_{46}^{\rm O}_3$: C 77.46, H 11.08, found: C 78.16, H 10.88; ir (KBr): 3300 (broad), 1740 cm⁻¹.

Acetylation of (25S)-5α-cholestane-3β, 26-diol

The diol $\underline{7}$ was acetylated with $\operatorname{Ac}_2{}^0$ (1 molar equivalent) in pyridine at rt to give a mixture of unreacted 3,26-diol $\underline{7}$, 3-monoacetate $\underline{8}$, 26-monoacetate $\underline{9}$ and 3,26-diacetate $\underline{10}$.

These products were isolated by chromatography on silica gel-Ce lite 535 (1:1) by elution with benzene-ethyl acetate (9:1).

(25S)- 5α -cholestane- 3β , 26-diol 3-monoacetate 8

This compound had mp 125-127°C, $\left[\alpha\right]_{D}^{25}+8^{\circ}$ (c 1.68, CHCl₃); analysis calcd. for $C_{29}H_{50}O_3$: C 77.97, H 11.28, found: C 78.46, H 11.11; ir (KBr) broad between 3100-3050; nmr (CDCl₃): δ 0.65 (s,3H,18-CH₃), 0.82 (s, 3H, 19-CH₃), 0.87 (d, 3H, 27-CH₃), 0.92 (d, 3H, 21-CH₃), 2.00 (s, 3H, CH₃COOR), 3.45 (d J=6 Hz, 2H, 26-<u>CH₂OH)</u>, 4.5-4.8 (m, 1H, 3-CH).

(25S)- 5α -cholestane- 3β , 26-diol 26-monoacetate 9

This product had mp 78-85°C; $\left[\alpha\right]_{D}^{25}$ +20° (c 0.38, CHCl $_{3}$), analysis calcd. for $C_{29}H_{50}O_{3}$: C 77.97, H 11.28, found: C 78.40,H 10.92;

ir (KBr): broad between 3600-3200, 1740, 1240 cm⁻¹; nmr (CDCl₃) δ 0.62 (s, 3H, 18-CH₃), 0.79 (s, 3H, 19-CH₃), 0.87 (d, 3H, 27-CH₃), 0.92 (d, 3H, 21-CH₃), 2.03 (s, 3H, CH₃COOR), 3.4-3.7 (m, 1H, 3-CH), 3.90 (d, 2H, $26-\underline{\text{CH}}_2\text{OCOCH}_3$).

(25S)- 5α -cholestane- 3β , 26-diol diacetate 10

This compound had mp $108-112^{\circ}\text{C}$; [α] $_D^{25}+10^{\circ}$ (c 0.53, CHCl $_3$); analysis calcd. for $\text{C}_{31}\text{H}_{52}\text{O}_4$: C 76.18, H 10.72, found: C 76.61, H 10.51; ir (KBr): 1745, 1250 cm ; nmr (CDCl $_3$) δ 0.65 (s, 3H, $18-\text{CH}_3$), 0.82 (s, 3H, $19-\text{CH}_3$), 0.87 (d, 3H, $27-\text{CH}_3$), 0.92 (d, 3H, $21-\text{CH}_3$), 2.00 (s, 3H, CH_3COOR), 2.03 (s, 3H, CH_3COOR), 3.90 (d, 2H, $26-\underline{\text{CH}}_2\text{OAc}$), 4.5-4.8 (m, 1H, 3-CH).

(25S)-3-oxo-5 α -cholestan-26-yl acetate 12

0.5 g of (25S)-5 α -cholestane-3 β , 26-diol 26-monoacetate $\underline{9}$ was oxidized with CrO $_3$ by Jones' procedure (10) to (25S)-3-oxo-5 α -cholestan-26-yl $\underline{12}$ (0.48 g) of oily product, chromatographically pure: ir (nujol) 1745, 1720, 1240 cm $^{-1}$; nmr (CDCl $_3$) δ 0.66 (s, 3H,18-CH $_3$), 0.84 (s, 3H, 19-CH $_3$), 2.02 (s, 3H, CH $_3$ COOR), 3.86 (d, J=7 Hz, 2H $\underline{\text{CH}}_2$ OCOCH $_3$).

Hydrolysis of $\underline{12}$ with KOH in methanol, gave (25S)-26-hydroxy-5 α -cholestan-3-one, which was crystallized from methanol: mp 136-138°C; $\left\{\alpha\right\}_0^{25}$ +33° (c 0.34, CHCl $_3$); analysis calcd. for C $_{27}$ H $_{46}$ O $_2$: C 80.54, H 11.52, found: C 81.07, H 11.33; ir (CHCl $_3$): 3620, 1710 cm $^{-1}$; nmr (CDCl $_3$) 0.75 (s, 3H, 18-CH $_3$), 0.92 (s, 3H, 19-CH $_3$), 3.51 (d, J=6 Hz, 2H, CH $_2$ OH).

$(25S)-5\alpha$ -cholestane-3 β , 26-diol- $[2,4,2',4'-3H_4]$ 14

(258)-3-oxo-5 α -cholestan-26-yl acetate $\underline{12}$ (15 mg) was dissolved in 7.6 ml of 0.1 N NaOH in iso-Pro 3 H (2 Ci) and refluxed under N $_2$ for 5 h. The solution was lyophilized and the solid residue redissolved in CHCl $_3$; the solution was washed with H $_2$ O, dried over Na $_2$ SO $_4$ and evaporated in vacuo. The residue $\underline{13}$ was reduced with NaBH $_4$ in ethanol to yield (258)-5 α -cholestane-3 β , 26-diol-[2,4,2',4'- 3 H $_4$] $\underline{14}$.

Purification by preparative TLC with benzene-ethyl acetate (9:1) sis calcd. for $C_{29}H_{50}O_3$: C 77.97, H 11.28, found: C 78.40, H 10.92; ir (KBr): broad between 3600-3200, 1740, 1240 cm⁻¹; nmr (CDCl₃) δ

0.62 (s, 3H, 18-cH₃), 0.79 (s, 3H, 19-cH₃), 0.87 (d, 3H, 27-CH₃), 0.92 (d, 3H, 21-CH₃), 2.03 (s, 3H, CH₃COOR), 3.4-3.7 (m, 1H, 3-CH), 3.90 (d, 2H, 26- $\underline{\text{CH}}_2$ OCOCH₃).

(25S)-5α-cholestane-3β, 26-diol diacetate 10

This compound had mp $108-112^{\circ}\text{C}$; $\left[\alpha\right]_{D}^{25}+10^{\circ}$ (c 0.53, CHCl $_3$); analysis calcd. for $\text{C}_{31}\text{H}_{52}^{0}\text{A}$: C 76.18, H 10.72, found: C 76.61, H 10.51; ir (KBr): 1745, 1250 cm⁻¹; nmr (CDCl $_3$) δ 0.65 (s, 3H, $18-\text{CH}_3$), 0.82 (s, 3H, $19-\text{CH}_3$), 0.87 (d, 3H, $27-\text{CH}_3$), 0.92 (d, 3H, $21-\text{CH}_3$), 2.00 (s, 3H, CH_3COOR), 2.03 (s, 3H, CH_3COOR), 3.90 (d, 2H, $26-\underline{\text{CH}}_2\text{OAc}$), 4.5-4.8 (m, 1H, 3-CH).

(25S)-3-oxo-5α-cholestan-26-yl acetate 12

0.5 g of (25S)-5 α -cholestane-3 β , 26-diol 26-monoacetate $\underline{9}$ was oxidized with CrO $_3$ by Jones' procedure (10) to (25S)-3-oxo-5 α -cholestan-26-yl $\underline{12}$ (0.48 g) of oily product, chromatographically pure: ir (nujol) 1745, 1720, 1240 cm $^{-1}$; nmr (CDCl $_3$) 8 0.66 (s, 3H, 18-CH $_3$), 0.84 (s, 3H, 19-CH $_3$), 2.02 (s, 3H, CH $_3$ COOR), 3.86 (d J=7 Hz, 2H, CH $_2$ OCOCH $_3$).

Hydrolysis of 12 with KOH in methanol, gave (25S)-26-hydroxy-5 α -cholestan-3-one, which was crystallized from methanol: mp 136-138°C; [α] $_0^{25}$ +33° (c 0.34, CHCl $_3$); analysis calcd. for C $_{27}$ H $_{46}$ O $_2$: C 80.54, H 11.52, found: C 81.07, H 11.33; ir (CHCl $_3$): 3620, 1710 cm $^{-1}$; nmr (CDCl $_3$) 0.75 (s, 3H, 18-CH $_3$), 0.92 (s, 3H, 19-CH $_3$), 3.51 (d, J=6 Hz, 2H, CH $_2$ OH).

$(25S)-5\alpha$ -cholestane-3 β , 26-diol- $[2,4,2',4'-3H_A]$ 14

 $(25\mathrm{S})$ -3-oxo-5 α -cholestan-26-yl acetate $\underline{12}$ (10 mg) was dissolved in 0.1 N NaOH in iso-PrO 3 H and refluxed under N $_2$ for 5 h. The solvent was removed in vacuo at rt and the solid residue redissolved in CHCl $_3$; the solution was washed with H $_2$ O, dried over Na $_2$ SO $_4$ and evaporated in vacuo. The residue $\underline{13}$ was reduced with NaSH $_4$ in ethanol to yeld $(25\mathrm{S})$ -5 α -cholestane-3 β , 26-diol- $\left[2,4,2',4'-{}^3\mathrm{H}_4\right]$ $\underline{14}$.

After purification using preparative tlc with benzene-ethyl ace afforded 11 mg of chromatographically pure $\underline{14}$, with a specific activity of 61.7 mC/mMole.

The above compound appeared to be chemically and radiochemically homogeneous also by TLC with petroleum ether-acetone (7:3) and chloronormethanol (95:5).

The location of the label at the 2,4,2',4' positions was demonstrated by chromic acid oxidation of 14 followed by back-exchange of the crude compound with unlabelled 0.1 N NaOH in iso-PrOH and the result was the complete loss of tritium.

The labelled compound <u>14</u> is stable for at least one month; in fact it was administred as a biogenetic precursor to Lycopersicon Pimpinellifolium plants in a one month period, during which TLC controls showed that it was chemically and radiochemically unaltered.

REFERENCES

- 1. Ronchetti F., Russo G., Ferrara G. and Vecchio G. Phytochemistry 14: 2423 (1975).
- Tschesche R., Saito Y. and Töpfer A. Tetrahedron Lett. 967 (1974).
- 3. Goodson L.H. and Noller C.R. J.Amer.Chem.Soc. 61: 2420 (1939).
- 4. Eddy C.R., Wall M.E. and Scott M.K. Anal Chem. 25: 266 (1953).
- 5. Sato H. and Sakamura S. Agr. Biol. Chem. <u>37</u>: 225 (1973).
- Wall M.E., Serota S. and Eddy C.R. J. Amer. Chem. Soc. <u>77</u>: 1230 (1955).
- 7. Sato Y. and Latham H.G. J.Amer.Chem.Soc. <u>78</u>: 3150 (1956).
- 8. Bennett R.D., Sauer H.H. and Heftmann E. J.Labelled Compds. 5: 160 (1969).
- 9. Bennett R.D., Heftmann E. and Joly R.A. Photochemistry 9: 349 (1970).
- 10. Bowers A., Halsall T.G., Jones E.R.H. and Lemin A.J. J. Chem. Soc. 2548 (1953).